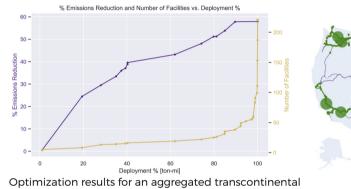
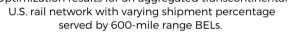
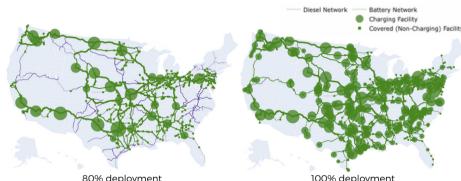
NUFRIEND Insights


VARYING TECHNOLOGY DEPLOYMENTS


Northwestern University Freight Rail Infrastructure & Energy Network Decarbonization (NUFRIEND) is a comprehensive industry-oriented tool to simulate the deployment of new energy technologies across U.S. freight rail networks. Scenario-specific simulation and optimization modules provide estimates for carbon reductions, capital investments, costs of carbon reductions, and operational impacts for any given deployment profile.


WHAT IS TECHNOLOGY DEPLOYMENT?

- Alternative technology deployment is measured as the percent of total ton-miles it serves, with diesel serving the rest.
- Drop-in fuels (e.g., biodiesel, renewable diesel, and e-fuels) can be blended with diesel and deployed in fueling facilities. •
- Battery-electric and hydrogen locomotives are limited to moving freight on routes with charging/refueling stations. •

This NUFRIEND Insights models variations in future battery-electric locomotive (BEL) deployment in an aggregated U.S. Class I railroad network, to analyze their costs and emissions.

Networks required to capture different deployment percentages.

WHAT CAN WE LEARN FROM VARYING TECHNOLOGY DEPLOYMENT?

Varying technology deployment affects leveled costs, emissions reductions, and helps identify deployment sweet-spots.

Emissions Reduction:

- Emissions reductions potential is highly dependent on the specific routes that are decarbonized.
- Different routes carry different commodity spreads with specific energy intensities and emissions.

Number of Charging Facilities:

- Near linear growth in number of charging facilities for a reasonable range of deployment (0%-80%).
- Number of facilities skyrockets as serving last-mile • routes requires facilities nearly everywhere.

SUMMARY

- Decarbonizing every last-mile shipment may require an unrealistic number of facilities but may not have a significant impact on total emissions.
- Battery-electric emissions reduction extents are capped by the electric grid's generation mix and emissions.
- As the densest corridors may be decarbonized first, there are diminishing marginal returns to deployment.
- The NUFRIEND tool can help individual railroads analyze different problem components over varying deployment levels to detect alternative technology deployment sweet-spots.

NUFRIEND Insights for: RAILROADS

- Assessment of benefits from advanced roll-out planning
- Potential gains from traffic-dense corridors or easy-todecarbonize routes
- Value of hybrid diesel and battery-electric locomotives in planning roll-outs

Visit <u>transportation.northwestern.edu</u> for more NUFRIEND Insights.

This work is funded under the LOwering CO2: Models to Optimize Train Infrastructure. Vehicles, and Energy Storage (LOCOMOTIVES) project b the Advanced Research Projects Agency - Energy (ARPA-E) of the U.S. Department of Energy under Award Number DE-AR0001469. The views for the Advanced Research Projects Agency - Energy (ARPA-E) of the U.S. Department of Energy under Award Number DE-AR0001469. The views

ENERGY PROVIDERS

- Emissions reductions potentials rely on cleaning up the national electricity generation mix
- Coordination to ensure adequate electricity supply for connected charging infrastructure

